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MEMORANDUM 3-10-59E

OPTIMIZATION OF PARAMETRIC CONSTANTS FOR CREEP-RUPTURE
DATA BY MEANS OF LEAST SQUARES

By S. S. Manson and A. Mendelson

SUMMARY

An objective method utilizing least squares is presented for the
determination of the optimum parametric constants for stress-rupture data.
The method is applied to bhoth isostress and isothermal data for the pa-
rameters proposed by Larson and Miller, Manson and Haferd, and by Dorn.
Several examples are treated in detail, and it was found that the method
glves good results. It 1s shown that the values of the constants for the
parameter proposed by Manson and Haferd are not critical as long as T,

and log ty, appear in the proper combination. In addition to optimiza-

tlon, the chief utility of the method lies in the fact that it gives the
same results for a given set of data no matter who makes the analysis,
which i1s not the case for the graphical methods presently employed.

INTRODUCTION

The problem of extrapolating and correlating high-temperature creep-
and stress-rupture data is presently receiving considerable attention.
In particular, the ability to extrapolate short-time rupture data can
greatly reduce costly experimental programs and also reduce time delays
in choosing a suitable material for a given application.

The most widely used techniques at present for extrapolating stress-
rupture data are the so-called parameter methods. These methods assume
that by plotting the creep-rupture data for a given material in an ap-
propriate parametric form a single master curve results which can then be
used for interpolation and extrapolation purposes. The three best known
parameter methods are those of Larson and Miller (ref. 1), Manson and
Haferd (linear parameter) (ref. 2), and Dorn (ref. 3).

The Larson-Miller method assumes that a plot of log rupture time
against the reciprocal of the absolute temperature at a given constant
nominal stress is linear. Furthermore, it is assumed that all such



constant-nominal-stress lines intersect at a common point (O,-C) (fig.
1(a)). A plot, therefore, of the stress o against (log t + C)(T + 460)
should produce a single master curve valid Tor all stresses and tempera-
tures as shown in figure 1(b). Originally, the constant C was taken
equal to 20; however, it is now generally r:cognized that for best re-
sults it will vary with the material.

The linear parameter method assumes that a plot of log rupture time
against temperature in degrees Fahrenheit at a glven constant nominal
stress is linear and that all such lines converge to a common point
(Ta, log ta) as shown in figure 2(a). Tte constants T, and log t,

are determined from the data for a given material in a given condition.
T-T
a

A plot, therefore, of the stress o againet Tog © - log t, should

produce & master curve, as shown in figure Z(b), valid for all stresses
and temperatures.

The Dorn method assumes that a plot of log rupture time against the
reciprocal of the absolute temperature at & given constant nominal stress
is linear and that all such straight lines are parallel with slope D as

_2.3 D

shown in figure S(a). A plot, therefore, cf the stress against te T+460

should produce a single master curve valid for all stresses and tempera-
tures (fig. 3(b)).

It is seen from the foregoing discussion that, in order to make use
of these parameter methods, certain materiel constants must be determined.
To do this, the general practice has been to plot creep-rupture data for
a given material as shown in figure 1(a), z(a), or 3(a), depending on the
selected parameter. The desired constants can then be obtained visually
by appropriate extrapolation. Only when deta are given in constant-
nominal-stress form, can these plots be obtained directly. In the more
usual case where the data are isothermal, several cross plots must first
be made before figures such as l(a), Z(a), and S(a) can be constructed.

Since creep-rupture data generally have appreciable scatter, it is
apparent that the results of such visual cross-plotting will depend upon
the judgment of the individual analyzing tle data. Furthermore, some
experience in the field of material evaluatlon is necessary in constructing
the various plots.

This report presents an analytical method for determining the best
values of the constants for the three parareters discussed. The method
which is based on the standard least-squares procedure makes use of the
original raw data and requires no judgment on the part of the analyzer.
Moreover, since it is a least-squares procedure, it gives the statistically



most probable values of the desired constants. The method is first pre-
sented for the case of constant-nominal-stress data and then for the more
usual case of isothermal data. Examples are presented for several mate-
rials for each of the two cases.

It is not the cbject of this report to discuss the merits of the var-
ious parameters used. This has been discussed at length in references 4
and 5 where it 1s indicated that in general the linear parameter gives
better agreement with experiment for extrapolated stress-rupture times
than either the Larson-Miller or Dorn parameters.

ANATLYSIS
Constant-Nominal-Stress Data

Larson-Miller parameter. - Consider a set of constant-stress data as
shown in figure 1(a). On the basis of the Larson-Miller parameter, it 1s
assumed that a set of straight lines intersecting the log t axis at
log t equal to -C can be fitted to these data. The equation of the
straight line passing through the data for the first constant-stress line
can be written as

y(l) = -C + bl'r(l) (l&)
and for the second isostress line,
y(z) = -C + sz(z) (lb)

Thus, for any isostress line, say the jth,

y(j) = -C + bjT(j) (lC)
where
y =log t
b= .th .
;= slope of j isostress line
N
T T + 460

and the superscripts designate the particular constant-stress line under
consideration.



To find the best set of lines fitting the data and intersecting at
the point -C, the sum of the squares of th2 deviations S of the actual
data points from the lines (the residuals) is minimized. Thus,

n

! 2
S =Z [ygl) +C - blrgl)]z +E [ygz) + C - bzrgz)]z + .. .+
i=1 i=1
p .
Z \:ygp) + C - bp’rgp):lc = minimum (2)

i=1

where p 1is the number of isostress lines and nj, ng, and so forth are
the number of data points for each line.

In order to find the values of C anc¢ the bj that will make S a
minimum, § is differentiated with respect to C and the bj, and the

resulting equations are set equal to zero. This results in

Ip n }
+ b Tgp) = .
‘ P E : i = E :yl
i=1 i=1
and
-A,C + bgBp = (g
! ! !
B
o v olp - o
-AC + bPBP = “P J




where

- E J
Aj = Ti
i=1

. =2y§3)1§3>
i=1

J
and n 1is the total number of data points:
n=nl+n2+...+np

Solution of equations (3) for C and b, gives

- 2 A]CJT
Zy- —Z ' |
i B
J
C= - I=1 J=1
1Y

2
A (5)
B;
J=1

n -

C: + A.C
b, o 4T g
J Bj P

By means of equations (5), the best value of the larson-Miller pa-
rameter C can be directly computed for a given set of constant-stress
data. The best lines intersecting at -C can also be plotted by using
the second of equations (5).

Dorn parameter. - To determine the best slope D of a set of paral-
lel constant-stress lines as shown in figure S(a), a similar procedure
as for the Larson-Miller parameter is used. The equation of any one of




the isostress lines can be written as follows:
MO IS (6)

The expression to be minimized now becomes

it 0 2
S =2 Eygl) - ay - Drgl)]z +Z [ygm - a5 - D'cgz)] + . . .+

i=1 i=1

2
[ygp) - a_ - D'tgp):l = minimum (7)
i o] i
1=
Differentiating with respect to the aj anl D and setting the resulting

expression equal to zero give

(8)

p P P
ajZAi+DEBi=ZCi
=1 i=1 i=1

where

A;, By, and C; are as defined in equations (4) and

n

=Y ¥ (52)
i=1



The solution of equations (8) gives

p N
c. - P
J nj
D = J=1
p 2
. d
E B; oy f (9)
=1
D. - DA.
S B
J n.
d W,

The Dorn parameter D can, therefore, be calculated directly from equa-
tions (9).

Linear parameter. - A similar approach as in the Preceding can be
used for determining the constants T, and log t, (fig. 2(a)) for the

linear parameter. The equation for any of the isostress lines is
y(3) =y - by + bjT(J) (10)

where

n

Vg log ta

Equation (lO), however, is nonlinear in the unknown constants because
of the term bjTa' Minimizing the sum of the squares of the deviations

would, therefore, lead to a set of nonlinear algebraic equations which
would be very difficult to solve. To avoid this difficulty, two alternate
approaches have been used. In the first approach, a value is assumed for

T,. Equation (10) is then written as follows:

y(J) =y, + bj['l‘(j) - Ta] (10a)

Equation (10a) has exactly the same form as equations (1) and the
solution is, therefore, given by equations (5) with C replaced by ~Yg

and T vreplaced by T - T,. Once the best values of yg and bj are
found for the assumed value of Ty, the sum S is computed by equation
(2) (again replacing C by -ys and T by T - T,). A new value of



T
a
The value of T, for which 8 is a minimun is the correct value. Since

is chosen, and the calculation is repea‘ed giving a new value of &S.

the results for the linear parameter are generally insensitive to the
exact value of T, as long as the corresponding value of Yy, is used,

the previous trial-and-error procedure need. in general, be carried out
only a few times in order to obtain a satisractory value for Tg.

An alternate simpler approximate method which does not involve trial
and error can also be used. In this method, the nonlinear term bjTa is

temporarily grouped with y,, and equation (10) is written as follows:
+3) < ay + bj'r(fl) (11)

where

dj = ¥y - byl

Equation (ll) is now linear in the unknown :cnstants, dj and bj, and

these can be found by least squares as before. Thus, the sum S to be
minimized now becomes

s=§: [ygl) -4, - bngl)]z +nzz [ygz' -4, - bZng)]z a4
=1 i=1
np 5
Z[ygp) - & - pr?)] = minimum (12)
i=1

Differentiating with respect to the dj ani bj leads to

njdj + Ajbj = Dj

(13)

where Aj, Bj, Cj, and Dj are as previously defined and



Solving equations (13) gives

B.D: - A.C.)
4. = odd T

J - 2
r— (14)

n:C. - A.D.
D, s —<dJ ~JJ

Since the best values for dj and bj have been determined from equa-
tions (14), the best values of T, and y, can now be found as follows:

dj = ya - bjTa

and it is desired to find the best values for vy, and T,. The following

sum 1s, therefore, minimized:

b
:E: (dj - Jg * bJ-Ta)2 = minimum (15)
1
which gives
p P A
pya'Taij=sz
le J=1
> (16)
P p 5 P
Va 3 by - Tap, (07 =37 g
J=1 J=1 J=1 v
Therefore,
\
P he b
PO IRIEE DRI
B =1 J=1 J=1
Ty = 2
P ) P
- b
P z :ba 2 : J > (17)
J=1 J=1
P P
ERED RS
Ya P W,
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Thus, T, and Yy, are directly computed from equations (14) and (17).

It will be shown later that the values of T, and y; obtained using

equations (14) and (17) differ very little from the values obtalned by
the trial-and-error method previously described. This procedure is more
fully discussed in the appendix.

Isothermal Data
Tt has been the general practice to perform stress-rupture tests at
constant temperature and to represent these data as shown in figure 4.
For this case a least-squares method to obtain the parametric constants,
similar to the one previously described, cen be used. To do this, the
master curves shown in figures l(b), 2(b), and 3(b) will be presented in

the following form:

Larson-Miller parameter:
(y + c(T + 460) = ag + ajx + azxz + . . .+t amxmW

Linear parameter:

Y - ¥g
T—_——T—a-= aq + 8.1X+ aZXZ + . . .+ a.me & (18)
Dorn parameter:
- ———2——— = an + ayx + a X+ + X
YT T xae0” 0T 2 T T

where x = log 0, m is the degree of the polynomial assumed, and y has
previously been defined. Note that the coefficients ay do not, of

course, have the same values in the three ecquations (18).

In equations (18), the master curves ure represented by polynomials
in log o. In general, a parabola or cubic will describe the master
curve with sufficient accuracy except for -hose materials whose master
curve has a reversal in curvature near the tall end at low stresses.
Generally, it is desirable to assume a parubola or a cubic first to deter-
mine the constants as described herein. The master curve should then be
plotted using these constants. If it appeurs that a reversal 1n curvature
is present at low stresses, the calculation should be repeated omitting
thege data. Omission of these data should not affect the true value of
the parametric constants since these are determinable from any segment
of the master curve. It might be expected that increasing the degree of
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the polynomial will improve the values of the constants. However, it will
be shown that polynomials higher than the third degree are generally
unnecessary.

The least-squares method will now be applied to equations (18). The
quantity that will be minimized is the sum of the squares of the differ-
ences between the logarithm of the actual rupture times and the theoreti-
cal rupture times, since the rupture time is generally the critical
variable.

Larson-Miller parameter. - The first of equations (18) is written
ags follows:

y = -C + agt + a;Tx + aZsz + ...+ a Tl (19)

where 1 = 1/(T + 460).
The sum of the squares of the residuals is

Il
S = E (yi + C - aoTi - alTiXi - az’tixg = 4 e e - a.anXIn

i=1

)2

(20)

Minimizing the sum of the squares of the reslduals as previously done
leads to the following set of equations for C and the as:

n ™
-nC + Epag + Eqay + . . . + Epag = :z: i
i=1
—E0C+Foao+Flal+ PP +Fma,m=Go

$ (21)
-E}C + F%ao + Foay + o « o + Fpijay, = Gy
oo
i |
[
-EmC + Fmao + Fm+lal + o o o + FZmam Gm‘)

|
[ |
f |




1z

Where
n M
z : J
Ej = T ;xS
i=1
n
_ 2 : 2.J
FJ = TiXi > (22)
i=1
n
G: = < T X‘.j
i< JiTi%y
i=1 W,

The solution of equations (21) gives the optimum value of C as well as

the aj for an assumed degree polynomial or the master curve.

A word of caution is needed with rega:*d to the solution of equations
(21). These may in many cases be somewhat ill-conditioned, that is, a
large number of significant figures may ve lost during the process of
solution. Thus, care must be exercised thut enough significant figures
be carried In the calculation to ensure meuningful answers. The situation
is more aggravated the higher the degree o the polynomial assumed for
the master curve. However, as will be showvn, it generally would not be
necessary to assume more than a cubic for -he master curve. Note that
the number of equations to be solved is equal to the degree of the poly-
nomial assumed plus two.

Linear parameter. - The second of equetions (18) i1s written as
follows:

y =y, + (T - Ta)ao + (T - Ta)alx + (T - Ta)azx2 + v o .+ (T - Ta)amxm

(23)

Equation (23) is of the same form as equation (19) with -C replaced by
Yy and T replaced by T - T,. The soiution, therefore, is given by

equations (21) and (22) provided T, is krown. A trial-and-error pro-
a

cedure is thus followed as described for tte constant-stress data. Values
are chosen for T,, and for each value equetions (21) and (22) are solved

and S 1is computed from equation (20) (by replacing C by -¥g and
T by T - Ta)' The value of T, for which S 1is a minimum is the

correct value.
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Dorn parameter. - The last of equations (18) is written as follows:

y=Dt+ag+ ax+ a2x2 + . . .+ amxm (24)

where T = 1/(T + 460).

Minimizing the sum of the squares of the residuals leads to the following
equations:

n N
nag + EgD + Hya; + Hpap + . . ’+Hmam=23’i
i=1
Egag + FoD + Ejag + Boap + . . .+ Epan = Go
Hlao + ElD + Hzal + H332 + . . .+ Hm+lam = Il > (25)
Hzao + EzD + Hsal + H4a2 + . . .+ Hm+2am = Iz
/ I | ) \
| I | \ \
/ / I } \
Hpag + BpD + Hpgy8y + Hpepap + 0 o o 4 Hppay = I
where Ej and Gy have previously been defined and
n N
H= E xg
i=]1
> (26)
n
=z: J
I= vix§
i=1 )

The solution of equations (25) gives the best values of D and the

aj for a given degree polynomial for the master curve.

EXAMPLES

Constant-Nominal-~Stress Data

Consider a set of constant-stress data as given 1n table I and taken
from a tabulation of the data in reference 4. It is seen from the table

that

nl = 9) n2 = 9, n3 = 9, n4 = 8, n = 35
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; 1 .
Letting T = T, % 260 (egs. (4)) gives

A. = 5.1709%10"2 B. = 2.9758x107° C. = 8.0785x10"93 D 13.748

A, = 5.2997x10" B, = 3.1311x10°®  C, = 5.6297x107% D, = 8.8652

Az = 5.5102x1073 Bz = 3.3793x10°6  Cyz = 4.3022x1073 Dz = 6.6343
Ay = 5.3898%10"% B, = 3.6358x107°6 ¢, = 5.3599x10"° D, = 7.6130
and
35
y; = Dy + Dy + Dy + I, = 36.861
=1

Then, from equations (5)
C = 23.8

by = 44,146 by = 42,154 Dbz = 4C,151 by = 36,819

The best value of C in this case is therefore 23.8.
By using equations (9), the Dorn parameter is calculated as
D = 41,470

To calculate the constants for the linear parameter by the trial-
and-error method described, values must be assumed for T,. If it is

not known at all what region T, might be ia, a rough plot could be made
to determine a first guess for T,. Thus, assuming T, = 500 and, in

this case, defining T =T - Ty (egs. (4)) give

Ay = 7,049.99 By = 5.56625x106 = 10.2311x10°

Q
i)
I

5.39997x10°

>
[aV]
|

= 6,694.99 By = 5.06842x10°% ¢,

Az = 6,084.98 Bz = 4.15518x10° Cz = 3.84065x10°

[
1]

2.23945x10° ¢, = 3.48307x10°

é?
|

= 4,209,98 By

i
1
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and, as before,

35
y; = 36.8608

1=]

Therefore, from equations (5), by letting Yy, take the place of -C,
there is obtained

Vg = 1l.4 *
by = -0.001266 by = -0.001405 bz = -0.001583 b, = -0.001996

Then, from equation (2},
S = 0.6707

Now, by assuming a value of T, equal to 600, the computations are re-

peated giving
Yg = 9.896
S = 0.5819
and, for T, = 700,
¥y, = 8.308
S = 0.5889

These calculations indicate a minimum value for 8 at Ta = 600. If

greater accuracy is desired, a few more points can be taken in this
vieinity. Thus, it turns out that the true minimum is approximately at

Ty = 650
Yo = 9.108
8 = 0.5640

However, as will be shown later, using values of T, = 600, y, = 9.9 or
Ty, = 700, y, = 8.3 will not affect the stress-rupture results appreciably.
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This trial-and-error procedure can be completely avoided if the
approximate method described for the linear parameter 1is used. Thus, by
defining T = T, equations (4) give

_ 6 - -
A = 11,550 By = 14.866x105 €y = 17,105 Dj = 13.748
A, = 11,195 B, = 14.013x10°  Cgp = 9,832.6 Dy = 8.8652
As = 10,585 Bg = 12.490x10° Cz = 7,157.8 Dz = 6.6343

A, = 8,210 By = 8.4494x10° ¢, = 7,289.6 = 7.6130

K
1

and from equations (14),

d; = 17.4 by = -C.0l24
dy = 17.9 by = ~C.0136
dg = 19.3 by = -C.0158
4y = 23.4 by = -(.0219

Substituting into equations (17) glves

T, = 643

9.3

"

Ya

In this case the trial-and-error procedure is not really necessary as
good results can be obtained by using equations (14) and (17) to get Tg
and Yy,

Isothermal Date

Consider the isothermal data of figure 4 tabulated in table II. To

calculate the best parameter C, let T = 1 and assume a third-
Ty + 4€0

degree polynomial (m = 3) for the master curve. Then computing the Ej,
Fj, and Gj by equations (22) and substituting into equations (21), with
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m = 3, give the following five equations:

-32C + 0.017013000 ag + 0.067135551 a; + 0.26671741 a, +
1.0666639 az = 62.095000

-0.017013000 C + 9.1227245x107% ay + 36.213995x10°6 ay +
144.71013x1076 a, + 582.01515%x1076 az = 0.033195744

-0.067135551 C + 36.213995x1076 ay + 144.71013%10°° a; +
582.01515x107% a, + 2355.6764x1076 az = 0.12753108

-0.26671714 C + 144.71013x10°% ay + 582.01515%10°6 a; +
2355.6764x107° a, + 9593.2956x1076 az = 0.49259087

-1.0666639 C + 582.01515x1076 ay + 2355.6764x1076 a; +

9593.2956x1075 ap + 0.039301429 az = 1.9127579

The solution of these equations gives
C = 15.3

ag = 182,925 &y = -92.231.9 a, = 20,404.8 ag = -1,697.03

To calculate the linear parameter constants Tar ¥gr let Ty =Ty - T,

and replace C by -Y4- For an assumed value of Ty Ej, Fj, and Gj

are computed as before from equations (22). Thus, with m= 3 and
T, = 0, equations (21) become

a

32y, + 46,000 ag + 178,945.27 aj + 700,948.43 a, + 2,764,570.3 az = 62.095

46,000 y, + 67.16x105 ag + 259.11478x10% a; + 1006.6607x10° a, +
3937.9381x10° az = 88,481

178,945.27 y, + 259.11478x10° ag + 1006.6607x10° a; + 3937.9381x10° a, +

15,510.467X106 az = 335,601.61
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700,948.43 y, + 1006.6607x10% ag + 3937.9361x108 a; + 15,510.467x106 a, +
61,505.824x10° a5 = 1,280,135.8
2,764,570.3 y, + 3937.9381x10°% ag + 15,510.467x10° a; + 61,505.824x10° aj +
245,526.23 ag = 4,910,487.4

The solution of these equations gives a value of y, = 15.0. The value
of S obtained from equation (20) is 0.4731. Choosing a value of Tg

equal to 100 and repeating the previous calculations result in a value of
Vg = 14.1 and S = 0.4801. A minimum value of S = 0.4671 1is obtained

for T, = -300 with a corresponding yg = 17.7. A plot of S against
T, and the corresponding values of Yy, ie shown in figure 5. It is seen

that S does not change much with Tg; in the range of O to -500. It
would, therefore, not make much difference which value of T, in this

range 1s used as long as the corresponding value of y, 1s used with it.
For other materials, the curve of § plotted against T, might have a

sharper minimum, and the value of T4 would be more critical.

For the Dorn parameter, E; and Gy are computed as for the Larson-

J
Miller parameter, and H; and Iy are computed using equations (26)
with T, = T;—;_ZEB . Then, for m = 3, the following equations are
obtained:

32ap9 + 0.017013000 D + 125.50874 11 + 495.64303 a, +
1970.5813 az = 62.035000
0.017013000 ag + 0.0000091227245 D + 0.037135551 aj + 0.26671741 as +
1.0666639 az = 0.033195744
125.50874 ap + 0.067135551 D + 495.64303 ay + 1970.5813 ap +

7886.7697 az = 237.26461
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495.64303 ag + 0.26671741 D + 1970.5813 a; + 7886.7696 as +
31,770.400 az = 911.60106

1970.5813 ap + 1.0666639 D + 7886.7697 ai + 31,770.400 ap +
128,793.83 az = 3521.6275

Solving these equations gives

D = 32,900

RESULTS AND DISCUSSION
Determination of Master Curves

In order to determine how well the various parameters are determined
by the least-squares method presented, master curves for the linear pa-
rameter were computed for the examples described. These master curves
are plotted for the constant-stress data of the 17-22A(S) steel and the
isothermal data of the 18-8 stainless in figures 6 and 7, respectively.
These curves were then used to replot the constant-stress lines for the
17-22A(8) and the isothermal curves for the 18-8 stainless. The results
in figures 8 and 9 show that the agreement between experimental data and
the computed lines 1s good.

Effect of Polynomial Approximation

As a further check on the assumption that the master curves can be
represented by polynomials as given in equations (18), the parameters for
the constant-stress data of the 17-22A(S) were recomputed using a poly-
nomial representation for the master curve. Thus, equations (21) were
golved for the linear parameters assuming polynomials of the third degree
and also of the fifth degree for the master curves. The values obtained
for both the third-degree and the fifth-degree polyncmials were 23.8 for
C, 650 for Tg, and 9.1 for 1log t,. These values are seen to be the

same as previously obtained using the constant-stress data directly to
find the best intersection of the straight lines.

As a further illustration, the data for 25-20 steel given in refer-
ence 2 were considered. The parameters for this material were obtained
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using second-, third-, fourth-, and fifth-éegree polynomials. The fol-
lowing results are obtained:

m=2, C=14.4, T, = -400, log t, = 17.3
m=3, C=14.2, T, = -200, log t, = 15.3
m=4, C= 14.4, Ty = -200, log ty = 15.3
m=5, C=14.6, T, = -200, log t, = 15.6

It is seen that the same results were obtained for all the polynomials
except for the polynomial of second degree shich gave slightly different
values for the linear parameter constants. However, there is very little
difference in the sum of the squares of the deviations in going from

T, = -200 to Ty = -400 so that even usinz a value of m = 2 would

give good results in this case.

Insensitivity of Results to Pirameter Values

As a further illustration of the relative insensitivity of creep-
rupture-data correlation to the precise valuies of the linear parameter
constants (as long as T, and log t, app:ar in the proper combination),

the data for Nimonic 80A as given in table II were analyzed. These data
were taken from reference 5 where the parametric constants are given as
16.9 for C, 660° F for Ty, and 9.65 for [og t,;. In a private communi-

cation to the authors of the present paper other investigators questioned
the values given in reference 5 stating tha', their analysis using the same
data gave values of T, = 100° F, log t, = 6.

An analysis was therefore made of these data using the least-squares
method presented herein. The results are stown in figures 10 and 11.
Figure 10 shows that the best values for the parameters are T, = 400° F,

log t, = 12.2. However, because the curve is flat in the region of its

minimum (it is drawn here to a very expande( scale in order to show the
precise minimum), other combinations of conetants show sums of deviations
not much higher than those at the minimum. Thus, the sum of the squares
of the deviations S for the minimum point is in the neighborhood of

5.5X10'2, the value for the constants of reference 5 is approximately
GXlO—Z, and for the constants of the private communication it is approxi-

mately 5.7x10'2. Thus, all three combinaticns are for all practical pur-
poses equally good. This is further illustrated in figure 11 where the
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reconstructed isothermals for each of the three combinations are compared
to the experimental data. All the computed values lie on the same solid
lines. It should be noted that all three combinations lie on the
straight-line plot of log tz against T5; of figure 10.

This illustration shows graphically how different investigators
analyzing the same data can arrive at different values of the constants
in the linear parameter unless an objective method such as the least-
squares method presented herein is used. It also shows, however, that
the degree of correlation of the data is rather insensitive to the pre-
cise values of the parameters as long as the proper value of log ty, 1is

used with T,. This Insensitivity of the correlation to the precise values

of the constants is due to the fact that the intersection point of the
constant-stress lines is generally remote from the actual data points.
Therefore, moving the intersection point along an average line through
all the data would not appreciably change the individual lines. It has
been the experience of the authors that this is true for most materials.

CONCLUSIONS

An objective least-squares method has been presented for determining
the optimum values of creep-rupture parametric constants for the Larson-
Miller, linear, and Dorn parameters. From the examples shown it ies con-
cluded that the results obtained are insensitive to the degree of poly-
nomial assumed for the master curve and that for the linear parameter the
actual values of T, and log t; are not critical as long as they appear

in the proper combination. Furthermore, the method permits a person with
no experience in the field of materials to obtain the correct values of
the parametric constants from tabular data.

Lewis Research Center
National Aeronautics and Space Administration
Cleveland, Ohio, December 12, 1958
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APPENDIX - APPROXIMATE METHOD FOR ('ONSTANT-STRESS DATA

Consider a set of constant-stress data as shown in figure 8. The
trial-and-error method for obtaining the best intersection point for these
lines utilizes the least-squares procedure by minimizing simultaneously
the squares of the deviation of all the date points from the lines. By
this method each point is given the same weight.

The approximate method described in the¢ body of this report first
treats each set of constant-stress data sepsrately and finds the best
fitting straight line for the set. Now, if the set of straight lines
thus determined 1s to intersect at a common point, a plot of slope ageinst
intercept for these lines should be a straight line as can be seen from
equations (11) where bj is the slope of the j'B 1line and dy is the

intercept. The so-called "best average" intersection point is therefore
found by fitting the best straight line to the plot of dj against bj.

It is to be noted that by this approxirate procedure each constant-
stress line is given the same weight without regard to the number of data
points assoclated with that stress. If the data are such that one or more
of the lines is ill defined then it may be desirable to employ some
weighting procedure when using the approximate method.
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TABLE T.

- STRESS-RUPTURE DATA FOR

17-22A(8) (REF. 4)

o) T t o T t

10,000([1370 2.8 40,000|1285 0.075
1370 3.7 1260 .37
1350 4.5 1210 1.35
1315 12.5 1210 1.90
1270 48.5 1175 6.60
1270 51.3 1150 13.6
1235 129.8 1120| 39.5
1210| 228.7 1100| 83.0
1160 (1301 1075]1205.7

20,000(1400 0.1 80,000{1140 0.033
1375 Az 1070 1.5
1320 1.0 1045 2.5
1270 3.9 1030 5.7
1230 13.3 1000| 15
1190 48.0 985| 82
1170} 102.7 970(109.2
1140| 242.1 9701433
1100} 987

23
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TABLE II. - 18-8 STAINLESS STEEL (REF. 2)

Tempera- |log t o log o Tempera-|log t g log o
ture, T ture, T
1200 0 38.0%10°|4.579784 160 0.55 9.O><lO3 3.95424
.575132.0 4.505150 .20 8.0 3.90309
1.04 (28.0 4.447158
2.48 1(18.0 4.255272 2.39 |4.0 3.60206
3.00 {14.0 4.,146128 2.66 3.5 3.544068
3.49 (11.5 4.060698 3.00 3.0 3.477121
3.26 |2.76 3.440909
1300 0.55 22.0’«'103 4.,342423 180C 0.08 5.OxlO3 3.69897
1.16 |18.5 4.267172 .91 (3.55 3.55022
2.28 |12.5 4.0896910 2.68 11.65 3.217484
2.79 [10.0 4.0
3.30 8.0 3.903080
3.90 6.0 3.778151
1400 |0.40 |18.0x107|4.255272
.81 |14.6 4.164353
2.86 7.0 3.845098
3.08 6.0 3.778151
3.52 5.0 3.698970
1500 [0.66 |11.0x10°|4.04393
17 9.4 3.973128
1.41 | 8.0 3.903090
2.12 6.0 3.778151
2.45 5.0 3.698970
3.02 4.0 3.602060




TABLE III. - RUPTURE DATA FROM NIMONIC 80A
(FROM REF. 5)
650° C 700° € 750° C
Stress, Iife, hr| Stress, Life, hr| Stress, Life, hr
tons/sq in. tons/sq in. tons/sq in.
30 274 23 208 17 138
28 481 21 443 16 230
26 898 19 683 14 419
24 1,292 16 1,735 12 852
22 2,655 13 4,836 10 1,857
20 5,270 10 10,896 8 4,450
18 8,171 7 34,053 6 13,089
16 13,386 4 22,657

25
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Figure 11. - Isothermal curve: for Nimonic 80A.
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